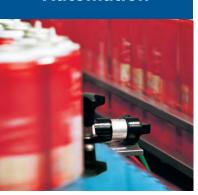
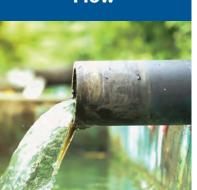
ULTRASONIC TRANSDUCERS

Dependable. Durable.


Your Partner from Prototype to Production


US*

Precision Tuned Products for Maximum Performance



Automation

Flow

Inventory Control

Email: INDUSTRIAL@AIRMAR.COM

www.airmar.com

PRODUCT OVERVIEW

Model	Frequency	Diameter	Typical Range	Beamwidth	Model	Model Frequency	Model Frequency Diameter	Model Frequency Diameter Typical Range
ART15					ARK50	ARK50	ARK50	ARK50
	15 kHz	ø 169 mm	1 m to 60 m	6°		50 kHz	50 kHz ø 92.2 mm	50 kHz
					ADVZE T	_		PVDF housing for chemically aggressive environment
AR20					ARK/5-I	ARK75-THD	ARK/5-IHU	ARK/5-IHD
	19.5 kHz	ø 205 mm	80 cm to 40 m	7°	9	75 kHz	1.5" pipe	1.5" pipe
AR30						PVDF housing	thread PVDF housing for chemically ac	PVDF housing for chemically aggressive environme
	30 kHz	ø 106 mm	80 cm to 25 m	12°	AT75	AT75	AT75	AT75
						75 kHz	75 kHz ø 38 mm	75 kHz ø 38 mm 25 cm to 7 m
ARK30					ATK75	ATK75	ATK75	ATK75
	30 kHz	ø 106 mm	80 cm to 25 m	12°	Altos	75 kHz		
	PVDF housing	for chemically age	gressive environments	s				PVDF housing for chemically aggressive environme
AR41					AT120//	AT120//	AT120/	AT120/
	41 kHz	ø 92.2 mm	35 cm to 15 m	14°		125 kHz	125 kHz ø 25 mm	125 kHz ø 25 mm 20 cm to 3 m
ARK41								
ARK41	44 1.11-	~ 02 2	25 4- 15	1.40	ATK120	ATK120	ATK120	ATK120
	41 kHz PVDF housing		35 cm to 15 m Igressive environment	14°		125 kHz	125 kHz ø 25 mm	125 kHz ø 25 mm 20 cm to 3 m
AR50					ARK120-	PVDF housin ARK120-THD		PVDF housing for chemically aggressive environme
	50 kHz	ø 92.2 mm	30 cm to 10 m	12°				
	JU KHZ	Ø 92.2 IIIIII	30 (111 (0 10 111	12		125 kHz	125 kHz ø 40.6 mm 1.5" pipe	
AR50CH						PVDF housin	thread PVDE housing for chemically a	thread PVDF housing for chemically aggressive environments
AKJUCII	50 kHz	ø 57 mm	30 cm to 10 m	12°	AT200		,	
	30 KH2	937 111111	30 cm to 10 m	12		200 kHz	200 kHz ø 16 mm	200 kHz Ø 16 mm 12 cm to 2 m
ARK50-1	THD							
	50 kHz	ø 51 mm	35 cm to 10 m	10°	ATK200	ATK200	ATK200	ATK200
		2" pipe thread				200 kHz	200 kHz ø 16 mm	200 kHz ø 16 mm 12 cm to 2 m
AT50	PVDF housing	g for chemically ag	gressive environment	ts	AT225			PVDF housing for chemically aggressive environme
	50 kHz	ø 57 mm	35 cm to 10 m	12°	A1225			
	JU KHZ	937 111111	33 (111 (0 10 111	12		225 kHz	225 kHz ø 13 mm	225 kHz ø 13 mm 10 cm to 1.5 m
ATK50					AT300_	AT300_	AT300_	AT300
	50 kHz	a 57 mm	35 cm to 10 m	10°		300 kHz	300 kHz ø 12 mm	300 kHz
		ø 57 mm	gressive environment					

As Airmar constantly improves its products, all specifications are subject to change without notice. All specifications typical at 22°C (72°F). Pulse-Echo Mode. Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Factory Mutual approved models suitable for: Class I, Division I, Hazardous Locations. AIRDUCER is a registered trademark of Airmar Technology Corporation. Other company or product names mentioned in this document may be trademarks or registered trademarks of their respective companies, which are not affiliated with Airmar.

AIRMAR TECHNOLOGY CORPORATION

Airmar Technology Corporation designs and manufactures the most advanced ultrasonic transducers on the market today. Pushing the boundaries of technology and delivering creative solutions that meet customers' unique demands has made us a world leader in the advancement of ultrasonic sensor technology.

The Company

Founded in 1982, Airmar has grown to employ over 400 employees at our 11 global locations, 3 of which are state-of-the-art facilities capable of executing every stage of the design and manufacturing process. From 3D modeling to injection molding, and from encapsulation to environmental testing, all work is completed in-house, allowing for end-to-end control and ISO 9001:2015 Certification. Airmar holds dozens of U.S. and foreign patents.

The Products

Airmar's teams of scientists, engineers and technicians design our multi-use ultrasonic transducers for a wide variety of applications and environments. Our transducers deliver proven non-contact sensing performance from equipment such as asphalt pavers, agricultural machinery and water/wastewater systems, as well as many other challenging applications.

Safe, compact and reliable, Airmar's ultrasonic transducers serve as critical components in the development of a myriad of sensors and measurement systems in fields requiring liquid or solid levels, flow control, automation control, proximity sensing, obstacle avoidance, distance measurement, inventory control and more

The Ultrasonic Advantage

Manufactured and factory-tuned in the U.S.A., Airmar's ultrasonic transducers are built for lasting durability and function well in harsh environments. They are rated IP68 and have no moving parts to wear out, so no maintenance is needed. Unlike most alternative measurement solutions, ultrasonic transducers can detect clear, transparent or shiny objects, and are unaffected by color.

Airmar's highly accurate ultrasonic transducers are available in various diameters with and without threads. They operate within a frequency range of 15 kHz to 1 MHz and achieve a sensing range from 5 cm (2 in) to 60 m (196.85 ft). Airmar also offers customized designs to bring your innovative products from concept to production.

The Measuring Principle of Airducer® Ultrasonic Sensors

Sound generated above the human hearing range (typically above 20 kHz) is called ultrasonic. The frequencies of Airmar's standard product line range from 19.5 kHz to 300 kHz. Ultrasonic transducers operate by emitting short bursts of high-frequency sound waves in a cone-shaped pattern (also known as a beam). The echoes reflected by the target are received by the transducer and are used to determine position or measure distance. The distance can be computed using the speed of sound in the transmission medium by measuring the time it takes for the echo to return to the transducer. Using air as an example, at 22°C sound travels at an approximate rate of 345 meters per second. Changes in environmental conditions such as temperature, humidity and pressure can cause a change in the speed of sound in air.

Typical Applications For AIRDUCER® Ultrasonic Sensors

Level and Flow Measurement and Control

- Liquids, bulk solids, or grains
- In pipe and open channel flow

Process Control

- Distance measurement
- Web tension, roll diameter, web edge, or break detection
- Counting, sorting, or monitoring parts
- Determining loop measurement
- Collision avoidance or proximity sensing
- Robotics

Medical Applications

• Bubble detection

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best operating frequency: 15 kHz +/-0.5 kHz

Minimum Transmit Sensitivity at Best Transmit Frequency:

123 dB re 1µPa/V at 1 m

Minimum Receive Sensitivity at Best Receive Freq.: -148 dB re $1V/\mu Pa$

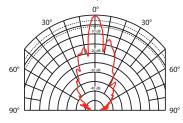
Minimum Parallel Resistance @15kHz: 100 Ohm Minimum and Maximum Sensing Range*: 1-60 m

Beamwidth (@ -3 dB Full Angle): 6° +/-2°

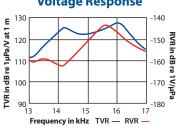
Maximum Driving Voltage (2% Duty Cycle Tone Burst): 900 V

Operating Temperature: -30°C to 60°C **Thermistor Operating Range:** -20°C to 60°C

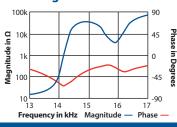
Weight: 2.6 lbs / 1.18 kg Cable Length: 10 m


Housing Material: Aluminum, static dissipative Kynar,

static dissipative PE Acoustic Window: LDPE


*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing.

Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.


Directivity Pattern

Transmit & Receive Voltage Response

Impedance Magnitude & Phase

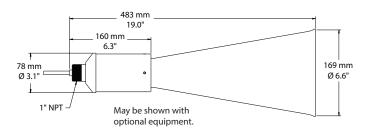
Figure of Merit (Sum of TVR & RVR)

15 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Silos
- Wells
- · Wastewater facilities
- Large capacity tanks
- River crossings/bridges


Features

- Delivers long range level measurements up to 60 m (197')
- Extended range without the cost of radar
- Built-in thermistor

Options

- Cable length can be customized
- · Also available without thermistor
- · Optional cable, cap and thermistor

Dimensions

Additional Resources

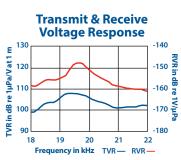
Theory of Operations

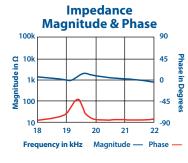
Applying
Ultrasonic
Technology

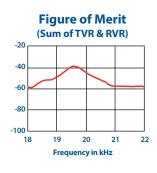
Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS


Best Operating Frequency: 19.5 kHz, $\pm 4\%$ Typical Sensing Range: 80 cm to 40 m Beamwidth (@ -3 dB Full Angle): 7° , $\pm 2^{\circ}$ Operating Temperature: -40°C to 60°C


Weight: 7.25 kg


Housing Material: Glass filled polyester **Acoustic Window:** Glass reinforced epoxy

Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.

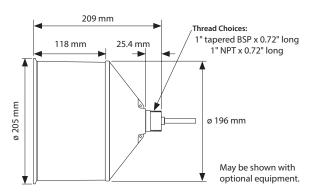
Directivity Pattern 0° 30° 30° 30° 60° 90°

19.5 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Long-range level measurement
- Powder, granular, and liquid, (40 m slurry tanks)


Features

- · Long-term reliability
- · Low maintenance
- Non-contact
- No moving parts

Options

- Cap with stainless steel 1" NPT or BSP thread mounts
- · Cable length can be customized

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 30 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency: 105 dB re $1\mu Pa/V$ at 1 m

Minimum Receive Sensitivity at Best Receive Frequency:

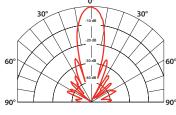
-155 dB re 1V/μPa

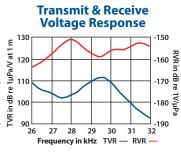
Minimum Parallel Resistance: 700Ω , $\pm 30\%$

Minimum and Maximum Sensing Range*: 60 cm to 30 m

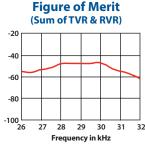
Typical Sensing Range: 80 cm to 25 m Free (1 kHz) Capacitance: 5,700 pF, $\pm 20\%$ pF Beamwidth (@ -3 dB Full Angle): $12^{\circ}, \pm 2^{\circ}$

Maximum Driving Voltage (2% Duty Cycle Tone Burst): 2,200 V_{pp}


Operating Temperature: -40°C to 90°C


Weight: 800 g

Housing Material: Glass filled polyester **Acoustic Window:** Glass reinforced epoxy


Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.

Directivity Pattern

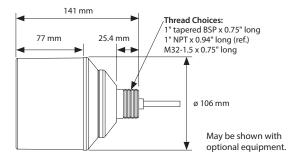
Impedance Magnitude & Phase 100k G 10k G 10k 100k 100k

30 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- · Level measurement
- Proximity
- Obstacle avoidance
- Traffic control


Features

- Rugged sealed construction
- Housing design will accommodate transceiver and signal processing electronics
- Standard internal shielding

Options

- Cylinder housing available with mounting cap kit
- Cable length can be customized
- Mounting cap available in BSP, NPT, or M32 threads
- 10 KΩ thermistor available for temperature compensation
- Available in PVDF housing for use in chemically aggressive environments (ARK30)
- Cap kit sold separately

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

^{*}Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing.

Technical Data Sheet

ARK30 Optional cap kit

SPECIFICATIONS

Best Operating Frequency: 30 kHz, $\pm 4\%$

Minimum Transmit Sensitivity at Best Transmit Frequency:

105 dB re 1μ Pa/V at 1 m

Minimum Receive Sensitivity at Best Receive Frequency:

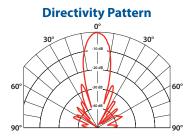
-155 dB re 1V/µPa

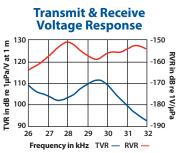
Minimum Parallel Resistance: 700Ω , $\pm 30\%$

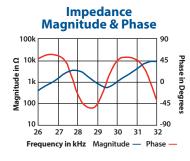
Minimum and Maximum Sensing Range*: 60 cm to 30 m

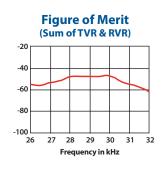
Typical Sensing Range: 80 cm to 25 m Free (1 kHz) Capacitance: 5,700 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 12°, ±2°

Maximum Driving Voltage (2% Duty Cycle Tone Burst): $2,200 \, \text{V}_{\text{DD}}$


Operating Temperature: -40°C to 90°C


Weight: 800 g


Housing Material: Kynar® 720 **Acoustic Window:** Kynar® 720


*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing.

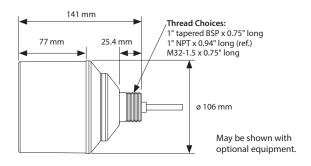
Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.

30 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- · Level measurement
- Level measurement in chemically aggressive environments
- Food and beverage processing
- Proximity sensing
- Obstacle avoidance


Features

- Rugged sealed construction
- Housing design will accommodate transceiver and signal processing electronics
- Standard internal shielding

Options

- · Cable length can be customized
- 10 K Ω thermistor available for temperature compensation
- · Mounting caps available in BSP, NPT, or M32 threads
- · Available in alternate housing material (AR30)

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

Developer Board

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 41 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

110 dB re 1µPa/V at 1 m

Minimum Receive Sensitivity at Best Receive Frequency: -160 dB

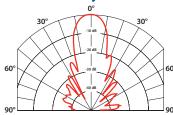
re 1V/µPa

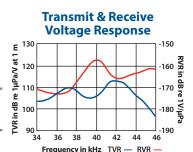
Minimum Parallel Resistance: 150 Ω , $\pm 30\%$

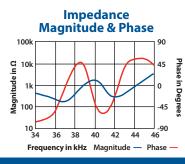
Minimum and Maximum Sensing Range*: 30 cm to 20 m

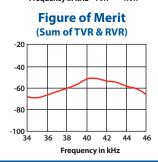
Typical Sensing Range: 35 cm to 15 m Free (1 kHz) Capacitance: 5,000 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 14°, ±2°

Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,800 V


Operating Temperature: -40°C to 90°C


Weight: 560 g


Housing Material: Glass filled polyester Acoustic Window: Glass reinforced epoxy

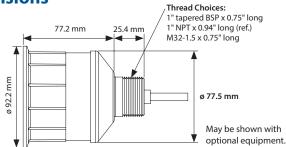

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.

41 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Level measurement
- Proximity
- Obstacle avoidance
- Traffic control
- Flow measurement


Features

- Rugged sealed construction
- Housing design will accommodate transceiver and signal processing electronics
- Standard internal shielding

Options

- Cable length can be customized
- · Mounting cap available in BSP, NPT, or M32 threads
- · Available in PVDF housing for use in chemically aggressive environments (ARK41)
- 10 KΩ thermistor available for temperature compensation

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer **Board**

Technical Data Sheet

SPECIFICATIONS

Best Operating Frequency: 41 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

 $108 dB re 1\mu Pa/V at 1 m$

 $\textbf{Minimum Receive Sensitivity at Best Receive Frequency:} \ -175 \ dB$

re 1V/μPa

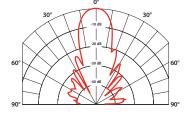
Minimum Parallel Resistance: 200 Ω , $\pm 30\%$

Minimum and Maximum Sensing Range*: 30 cm to 20 m

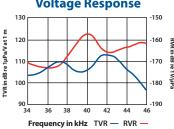
Typical Sensing Range: 35 cm to 15 m Free (1 kHz) Capacitance: 5,000 pF, $\pm 20\%$ pF Beamwidth (@ -3 dB Full Angle): 14° , $\pm 2^\circ$

Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,800 V

Operating Temperature: -40°C to 90°C


Weight: 560 g

Housing Material: Kynar® 720 Acoustic Window: Kynar® 720


*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing.

Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.transducer reaches a steady state.

Directivity Pattern

Transmit & Receive Voltage Response

Impedance Magnitude & Phase

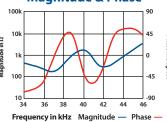
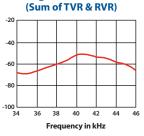



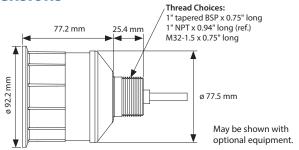
Figure of Merit

41 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Level measurement in chemically aggressive environments
- Food and beverage processing
- Flow monitoring


Features

- Rugged one-piece PVDF housing is U.S. FDA compliant
- Housing design will accommodate transceiver and signal processing electronics
- · Standard internal shielding

Options

- Cable length can be customized
- $10\ K\Omega$ thermistor available for temperature compensation
- Mounting caps available in BSP, NPT, or M32 threads
- Available in alternate housing material (AR41)

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Airmar's T1 Developer's Transceiver Module can be used for evaluation of AIRDUCER® Transducers.

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 50 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

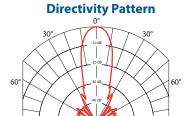
106 dB re 1µPa/V at 1 m

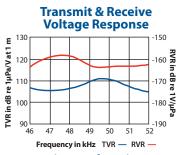
Minimum Receive Sensitivity at Best Receive Freq.: -162 dB re 1V/μPa

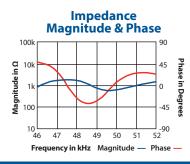
Minimum Parallel Resistance: 450Ω , $\pm 30\%$

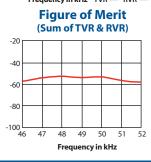
Minimum and Maximum Sensing Range*: 25 cm to 15 m

Typical Sensing Range: 30 cm to 10 m Free (1 kHz) Capacitance: 5,700 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 12°, ±2°


Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,500 V_{pp}


Operating Temperature: -40°C to 90°C


Weight: 560 g


Housing Material: Glass filled polyester **Acoustic Window:** Glass reinforced epoxy

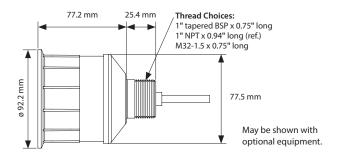
*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.

50 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Level measurement
- Open channel flow
- Obstacle avoidance
- Proximity


Features

- Rugged sealed construction
- Housing design will accommodate transceiver and signal processing electronics
- Standard internal shielding

Options

- · Cable length can be customized
- Mounting cap available in BSP, NPT, or M32 threads
- 10 K Ω thermistor available for temperature compensation
- Available in PVDF housing for use in chemically aggressive environments (ARK50)

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 50 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

 $106 dB re 1\mu Pa/V at 1 m$

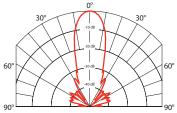
Minimum Receive Sensitivity at Best Receive Freq.: -162 dB re 1V/μPa

Minimum Parallel Resistance: 450Ω , $\pm 30\%$

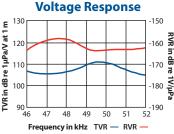
Minimum and Maximum Sensing Range*: 25 cm to 15 m

Typical Sensing Range: 30 cm to 10 m Free (1 kHz) Capacitance: 5,700 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 12°, ±2°

Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,500 V


Operating Temperature: -40°C to 90°C

Weight: 160 g


Housing Material: Glass filled polyester **Acoustic Window:** Glass reinforced epoxy

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.

Directivity Pattern

Transmit & Receive Voltage Response

Impedance Magnitude & Phase

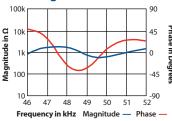
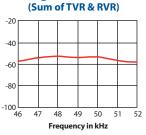



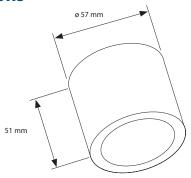
Figure of Merit

50 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Level measurement
- · Open channel flow
- Obstacle avoidance
- Proximity
- Robotics


Features

- Improved deadband performance as compared to AT50
- Rugged sealed construction
- · Cylindrical design allows for installation in various applications

Options

- 10 K Ω thermistor available for temperature compensation
- Available in alternate housing material (ATK50)

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Develope Board

Airmar's T1 Developer's Transceiver Module can be used for evaluation of AIRDUCER® Transducers.

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

ARK50-THD

50 mm

SPECIFICATIONS

Best Operating Frequency: 50 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

105 dB re 1μ Pa/V at 1 m

Minimum Receive Sensitivity at Best Receive Freq.: -170 dB re 1V/μPa

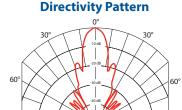
Minimum Parallel Resistance: 350 Ω , ±30%

Minimum and Maximum Sensing Range*: 30 cm to 15 m

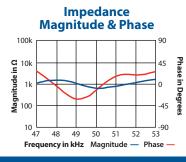
Typical Sensing Range: 35 cm to 10 m Free (1 kHz) Capacitance: 5,000 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 10°, ±2°

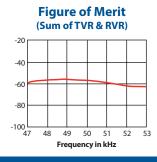
Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,000 V

Operating Temperature: -40°C to 90°C


Weight: 250 g

Housing Material: Kynar® 720 Acoustic Window: Kynar® 720


*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing.


Note: Optimally, performance measurements should be taken when the

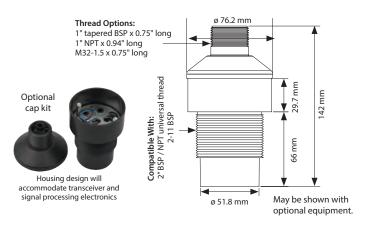
transducer reaches a steady state.

50 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Level measurement in chemically aggressive environments
- · Food and beverage processing
- Flow monitoring


Features

- Rugged one-piece PVDF housing is U.S. FDA compliant
- Threaded design allows for installation in various applications
- Standard internal shielding

Options

- Nut—2" BSP thread
- Complete assembly available with standard cable lengths
- 10 K Ω thermistor available for temperature compensation
- 12 mm extension sleeve
- Mounting caps available in BSP, NPT, or M32 threads
- Optional PCB standoff configuration lengths available

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Airmar's T1 Developer's Transceiver Module can be used for evaluation of AIRDUCER® Transducers.

©Airmar Technology Corporation

ARK50THD_rS 04/10/23
As Airmar constantly improves its products, all specifications are subject to change without notice. All specifications typical at 22°C. Factory Mutual approved models suitable for: Class I, Division 1, Hazardous Locations. AIRDUCER is a registered trademark of Airmar Technology Corporation. Other company or product names mentioned in this document may be trademarks or registered trademarks of their respective companies, which are not affiliated with Airmar. KYNAR is a registered trademark of Arkema.

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 50 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

 $106 dB re 1\mu Pa/V at 1 m$

Minimum Receive Sensitivity at Best Receive Freq.:-162 dB re 1V/μPa

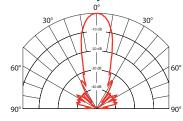
Minimum Parallel Resistance: 450Ω , $\pm 30\%$

Minimum and Maximum Sensing Range*: 30 cm to 15 m

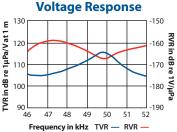
Typical Sensing Range: 35 cm to 10 m Free (1 kHz) Capacitance: 5,700 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 12°, ±2°

Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,500 V

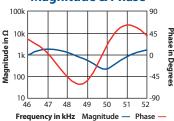
Operating Temperature: -40°C to 90°C

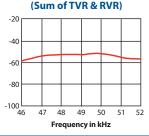

Weight: 160 g

Housing Material: Glass filled polyester **Acoustic Window:** Glass reinforced epoxy


*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing.

Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.


Directivity Pattern


Transmit & Receive

Impedance Magnitude & Phase

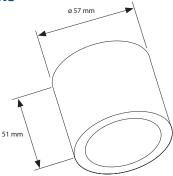
Figure of Merit

50 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Level measurement
- · Open channel flow
- Proximity
- Obstacle avoidance
- Robotics


Features

- Rugged sealed construction
- · Cylindrical design allows for installation in various applications

Options

• 10 K Ω thermistor available for temperature compensation

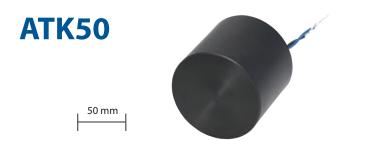
Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

Developer Board


Airmar's T1 Developer's Transceiver Module can be used for evaluation of AIRDUCER® Transducers.

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 50 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

105 dB re 1μ Pa/V at 1 m

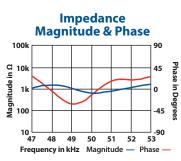
Minimum Receive Sensitivity at Best Receive Freq.:-170 dB re 1V/µPa

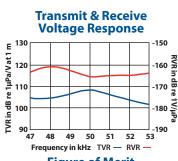
Minimum Parallel Resistance: 350 Ω , ±30%

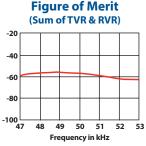
Minimum and Maximum Sensing Range*: 30 cm to 15 m

Typical Sensing Range: 35 cm to 10 m Free (1 kHz) Capacitance: 5,000 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 10°, ±2°

Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,000 V


Operating Temperature: -40°C to 90°C


Weight: 190 g


Housing Material: Kynar® 720 Acoustic Window: Kynar® 720

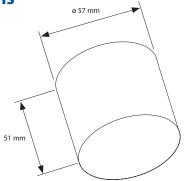
*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.

50 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- · Level measurement in chemically aggressive environments
- · Food and beverage processing
- · Proximity sensing
- Obstacle avoidance


Features

- Rugged one-piece PVDF housing is U.S. FDA compliant
- Cylindrical design allows for installation in various applications

Options

• 10 $K\Omega$ thermistor available for temperature compensation

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 50 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

 $105 dB re 1\mu Pa/V at 1 m$

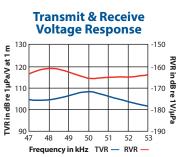
Minimum Receive Sensitivity at Best Receive Freq.: -170 dB re 1V/μPa

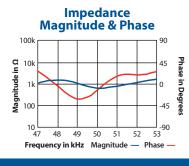
Minimum Parallel Resistance: 350 Ω , ±30%

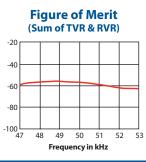
Minimum and Maximum Sensing Range*: 30 cm to 15 m

Typical Sensing Range: 35 cm to 10 m Free (1 kHz) Capacitance: 5,000 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 10°, ±2°

Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,000 V


Operating Temperature: -40°C to 90°C


Weight: 250 g


Housing Material: Kynar® 720 Acoustic Window: Kynar® 720

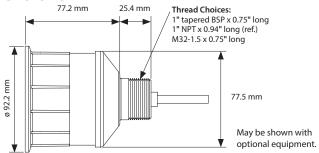
*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.

50 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- · Level measurement in chemically aggressive environments
- Food and beverage processing
- Flow monitoring
- · Proximity sensing


Features

- Rugged one-piece PVDF housing is U.S. FDA compliant
- Housing design will accommodate transceiver and signal processing electronics
- · Standard internal shielding

Options

- Cable length can be customized
- 10 $K\Omega$ thermistor available for temperature compensation
- Mounting cap available in BSP, NPT or M32 threads
- Available in alternate housing (AR50)

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

ARK75-THD

SPECIFICATIONS

Best Operating Frequency: 75 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

 $106 dB re 1\mu Pa/V at 1 m$

Minimum Receive Sensitivity at Best Receive Freq.: -165 dB re 1V/μPa

Minimum Parallel Resistance: 150 Ω , ±30%

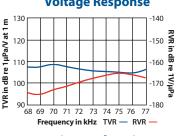
Minimum and Maximum Sensing Range*: 20 cm to 10 m

Typical Sensing Range: 25 cm to 7 m Free (1 kHz) Capacitance: 1,850 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 14°, ±2°

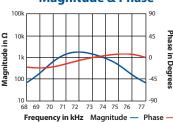
Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,000 V

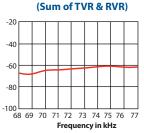
Operating Temperature: -40°C to 90°C

Weight: 250 g


Housing Material: Kynar® 720 Acoustic Window: Kynar® 720

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.


Directivity Pattern


Transmit & Receive Voltage Response

Impedance Magnitude & Phase

Figure of Merit

75 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- · Level measurement in chemically aggressive environments
- Food and beverage processing
- · Flow monitoring

Features

- · Rugged one-piece PVDF housing is U.S. FDA compliant
- Threaded design allows for installation in various applications
- Standard internal shielding

Options

- Nut—1.5" BSP thread
- Cable length can be customized
- 10 K Ω thermistor available for temperature compensation
- 12 mm extension sleeve
- Mounting caps available in BSP, NPT, or M32 threads
- Optional PCB standoff configuration lengths available

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Airmar's T1 Developer's Transceiver Module can be used for evaluation of $\mathsf{AIRDUCER}^{\otimes}\mathsf{Transducers}.$

©Airmar Technology Corporation

ARK75-THD rS 04/10/23
As Airmar constantly improves its products, all specifications are subject to change without notice. All specifications typical at 22°C. Factory Mutual approved models suitable for: Class I, Division 1, Hazardous Locations. AIRDUCER is a registered trademark of Airmar Technology Corporation. Other company or product names mentioned in this document may be trademarks or registered trademarks of their respective companies, which are not affiliated with Airmar. KYNAR is a registered trademark of Arkema.

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 75 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

111 dB re 1μ Pa/V at 1 m

Minimum Receive Sensitivity at Best Receive Freq.: -162 dB re 1V/µPa

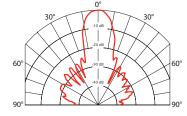
Minimum Parallel Resistance: 170 Ω , $\pm 30\%$

Minimum and Maximum Sensing Range*: 20 cm to 10 m

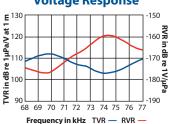
Typical Sensing Range: 25 cm to 7 m **Free (1 kHz) Capacitance:** 1,850 pF, ±20% pF **Beamwidth (@ -3 dB Full Angle):** 15°, ±2°

Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,000 V

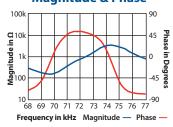
Operating Temperature: -40°C to 90°C

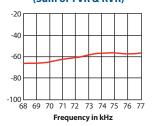

Weight: 45 g

Housing Material: Glass filled polyester **Acoustic Window:** Glass reinforced epoxy


*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing.

Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.


Directivity Pattern


Transmit & Receive Voltage Response

Impedance Magnitude & Phase

Figure of Merit (Sum of TVR & RVR)

75 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- · Level measurement
- · Open channel flow
- Proximity
- Obstacle avoidance
- Robotics

Features

- Rugged sealed construction
- Cylindrical design allows for installation in various applications

Options

- · Complete assembly or kit versions
- Available in PVDF housing for use in chemically aggressive environments (ATK75)
- 10 K Ω thermistor available for temperature compensation

Dimensions 38 mm

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 75 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

111 dB re 1μ Pa/V at 1 m

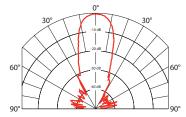
Minimum Receive Sensitivity at Best Receive Freq.: -162 dB re 1V/µPa

Minimum Parallel Resistance: 170 Ω , $\pm 30\%$

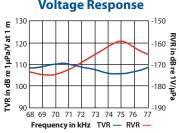
Minimum and Maximum Sensing Range*: 20 cm to 10 m

Typical Sensing Range: 25 cm to 7 m Free (1 kHz) Capacitance: 1,850 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 15°, ±2°

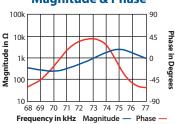
Maximum Driving Voltage (2% Duty Cycle Tone Burst): 1,000 V

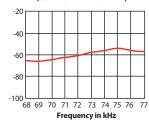

Operating Temperature: -40°C to 90°C

Weight: 45 g


Housing Material: Glass filled polyester **Acoustic Window:** Glass reinforced epoxy

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.


Directivity Pattern


Transmit & Receive Voltage Response

Impedance Magnitude & Phase

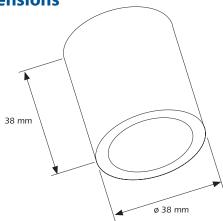
Figure of Merit (Sum of TVR & RVR)

75 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Level measurement in chemically aggressive environments
- · Automation control
- Food and beverage processing
- · Proximity sensing
- Obstacle avoidance


Features

- Rugged one-piece PVDF housing is U.S. FDA compliant
- Cylindrical design allows for installation in various applications

Options

- 10 K Ω thermistor available for temperature compensation
- Available in alternate housing (AT75)

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

AT120

SPECIFICATIONS

Best Operating Frequency: 125 kHz, ±4%

25 mm

Minimum Transmit Sensitivity at Best Transmit Frequency:

 $107 dB re 1\mu Pa/V at 1 m$

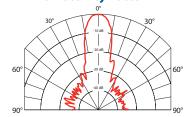
Minimum Receive Sensitivity at Best Receive Freq.: -169 dB re 1V/µPa

Minimum Parallel Resistance: 420 Ω , $\pm 30\%$

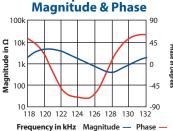
Minimum and Maximum Sensing Range*: 15 cm to 7 m

Typical Sensing Range: 20 cm to 3 m Free (1 kHz) Capacitance: 1,000 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 12°, ±2°

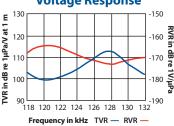
Maximum Driving Voltage (2% Duty Cycle Tone Burst): 800 V

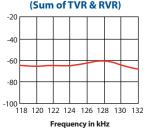

Operating Temperature: -40°C to 90°C

Weight: 20 g


Housing Material: Glass filled polyester Acoustic Window: Glass reinforced epoxy

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.


Directivity Pattern


Impedance

Transmit & Receive Voltage Response

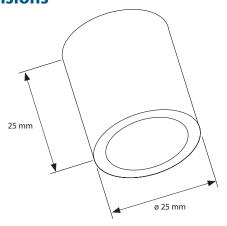
Figure of Merit (Sum of TVR & RVR)

125 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- · Level measurement
- Automation control
- Proximity
- Obstacle avoidance
- Robotics


Features

- Rugged sealed construction
- Cylindrical design allows for installation in various applications

Options

- Available in PVDF housing for use in chemically aggressive environments (ATK120)
- 10 KΩ thermistor available for temperature compensation

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer **Board**

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

ATK120

SPECIFICATIONS

Best Operating Frequency: 125 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

102 dB re 1μ Pa/V at 1 m

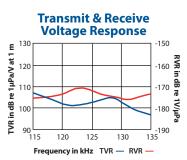
Minimum Receive Sensitivity at Best Receive Freq.: -172 dB re 1V/μPa

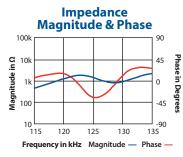
Minimum Parallel Resistance: 500Ω , $\pm 30\%$

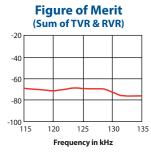
Minimum and Maximum Sensing Range*: 15 cm to 5 m

Typical Sensing Range: 20 cm to 3 m Free (1 kHz) Capacitance: 1,000 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 10°, ±2°

Maximum Driving Voltage (2% Duty Cycle Tone Burst): 800 V


Operating Temperature: -40°C to 90°C


Weight: 30 g


Housing Material: Kynar® 720 Acoustic Window: Kynar® 720

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.

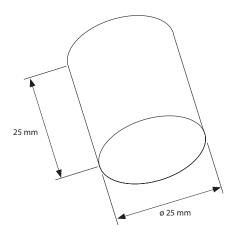
Directivity Pattern 0° 30° 30° 30° 60° 30° 60° 30° 60°

125 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Level measurement in chemically aggressive environments
- · Automation control
- Food and beverage processing
- · Proximity sensing
- Obstacle avoidance


Features

- Rugged one-piece PVDF housing is U.S. FDA compliant
- Cylindrical design allows for installation in various applications

Options

- 10 K Ω thermistor available for temperature compensation
- Available in alternate housing (AT120)

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 125 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

102 dB re 1µPa/V at 1 m

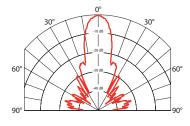
Minimum Receive Sensitivity at Best Receive Freq.: -172 dB re 1V/μPa

Minimum Parallel Resistance: 500Ω , $\pm 30\%$

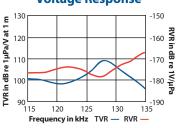
Minimum and Maximum Sensing Range*: 15 cm to 5 m

Typical Sensing Range: 20 cm to 3 m **Free (1 kHz) Capacitance:** 1,000 pF, ±20% pF **Beamwidth (@ -3 dB Full Angle):** 12°, ±2°

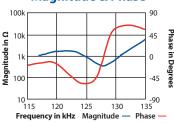
Maximum Driving Voltage (2% Duty Cycle Tone Burst): $800 \, \text{V}_{\text{DD}}$

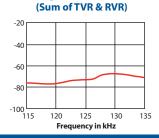

Operating Temperature: -40°C to 90°C

Weight: 250 g


Housing Material: Kynar® 720 **Acoustic Window:** Kynar® 720

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.


Directivity Pattern


Transmit & Receive Voltage Response

Impedance Magnitude & Phase

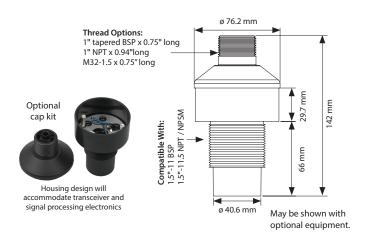
Figure of Merit

125 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- · Level measurement in chemically aggressive environments
- Food and beverage processing


Features

- Rugged one-piece PVDF housing is U.S. FDA compliant
- Threaded design allows for installation in various applications
- Standard internal shielding

Options

- Nut-1.5" BSP thread
- Complete assembly available with standard cable lengths
- 10 KΩ thermistor available for temperature compensation
- 12 mm extension sleeve
- PCB standoff configuration lengths available

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Airmar's T1 Developer's Transceiver Module can be used for evaluation of $\mathsf{AIRDUCER}^{\circ}\mathsf{Transducers}.$

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

SPECIFICATIONS

Best Operating Frequency: 200 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

 $105 dB re 1\mu Pa/V at 1 m$

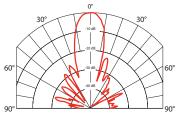
Minimum Receive Sensitivity at Best Receive Freq.: -174 dB re 1V/µPa

Minimum Parallel Resistance: 180 Ω , $\pm 30\%$

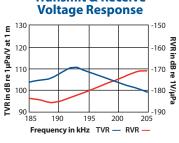
Minimum and Maximum Sensing Range*: 10 cm to 3 m

Typical Sensing Range: 12 cm to 2 m Free (1 kHz) Capacitance: 500 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 12°, ±2°

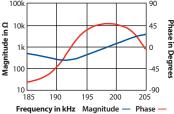
Maximum Driving Voltage (2% Duty Cycle Tone Burst): 500 V

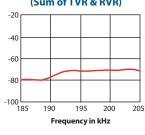

Operating Temperature: -40°C to 90°C

Weight: 6 g


Housing Material: Glass filled polyester Acoustic Window: Glass reinforced epoxy

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.



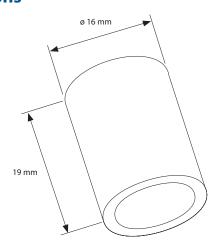

Transmit & Receive

Impedance Magnitude & Phase 100k

Figure of Merit (Sum of TVR & RVR)

200 kHz

AIRDUCER® Ultrasonic Transducer


Applications

- · Level measurement
- Automation control
- Proximity
- Obstacle avoidance
- Robotics

Features

- Rugged sealed construction
- · Cylindrical design allows for installation in various applications
- Available in PVDF housing for use in chemically aggressive environments (ATK200)

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer **Board**

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

ATK200

SPECIFICATIONS

Best Operating Frequency: 200 kHz, ±4%

25 mm

Minimum Transmit Sensitivity at Best Transmit Frequency:

102 dB re 1μ Pa/V at 1 m

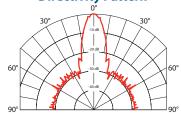
Minimum Receive Sensitivity at Best Receive Freq.: -180 dB re 1V/µPa

Minimum Parallel Resistance: 300 Ω , $\pm 30\%$

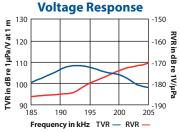
Minimum and Maximum Sensing Range*: 10 cm to 3 m

Typical Sensing Range: 12 cm to 2 m Free (1 kHz) Capacitance: 500 pF, \pm 20% pF Beamwidth (@ -3 dB Full Angle): 10°, \pm 2°

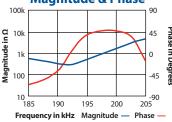
Maximum Driving Voltage (2% Duty Cycle Tone Burst): 500 V

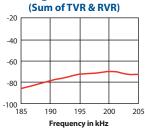

Operating Temperature: -40°C to 60°C

Weight: 6 g


Housing Material: Kynar® 720 Acoustic Window: Kynar® 720

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.


Directivity Pattern


Transmit & Receive Voltage Response

Impedance Magnitude & Phase

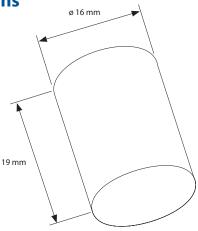
Figure of Merit

200 kHz

AIRDUCER® Ultrasonic Transducer

Applications

- Level measurement in chemically aggressive environments
- · Automation control
- Food and beverage processing
- · Proximity sensing
- · Obstacle avoidance
- Flow monitoring


Features

- · Rugged one-piece PVDF housing is U.S. FDA compliant
- Cylindrical design allows for installation in various applications

Options

· Available in alternate housing (AT200)

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

AT225 25 mm

SPECIFICATIONS

Best Operating Frequency: 228 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

 $101 dB re 1\mu Pa/V at 1 m$

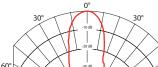
Minimum Receive Sensitivity at Best Receive Freq.: -180 dB re 1V/µPa

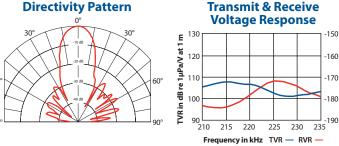
Minimum Parallel Resistance: 400Ω , $\pm 30\%$

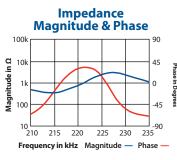
Minimum and Maximum Sensing Range*: 8 cm to 2.5 m

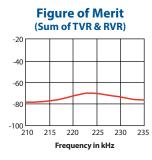
Typical Sensing Range: 10 cm to 1.5 m Free (1 kHz) Capacitance: 450 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 15°, ±2°

Maximum Driving Voltage (2% Duty Cycle Tone Burst): 500 V


Operating Temperature: -40°C to 90°C


Weight: 4 g


Housing Material: Glass filled polyester Acoustic Window: Glass reinforced epoxy

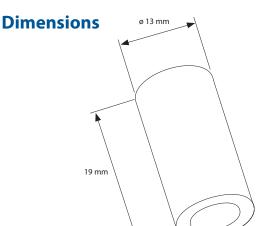

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the

transducer reaches a steady state.

228 kHz

AIRDUCER® Ultrasonic Transducer

Applications


- · Level measurement
- Automation control
- Proximity
- · Obstacle avoidance
- Robotics
- Flow

Features

- Rugged sealed construction
- · Cylindrical design allows for installation in various applications

Options

- Optional circuit board mounting pins
- 2 wire version is standard. Also available with coaxial cable.

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer **Board**

Technical Data Sheet

Airmar ultrasonic transducers deliver the highest level of performance in the most challenging environments and they are the key component for our customers success and their applications. Our precision tuned air-ranging transducers are tried and true performers, even when used for difficult tasks. American-made from the highest quality materials, Airmar's ultrasonic transducers provide reliable, long-lasting excellence to any measurement system.

AT300

25 mm

SPECIFICATIONS

Best Operating Frequency: 300 kHz, ±4%

Minimum Transmit Sensitivity at Best Transmit Frequency:

95 dB re 1μ Pa/V at 1 m

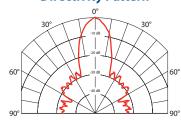
Minimum Receive Sensitivity at Best Receive Freq.: -180 dB re 1V/µPa

Minimum Parallel Resistance: 650Ω , $\pm 30\%$

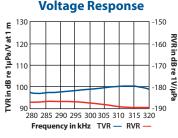
Minimum and Maximum Sensing Range*: 4 cm to 1 m

Typical Sensing Range: 5 cm to 50 cm Free (1 kHz) Capacitance: 450 pF, ±20% pF Beamwidth (@ -3 dB Full Angle): 10°, ±2°

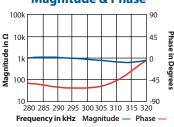
Maximum Driving Voltage (2% Duty Cycle Tone Burst): 200 V

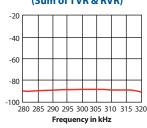

Operating Temperature: -40°C to 70°C

Weight: 4 g


Housing Material: Glass filled polyester **Acoustic Window:** Glass reinforced epoxy

*Pulse-Echo Mode: Minimum and maximum ranges are best case scenarios. Actual range may vary, depending on drive circuitry and signal processing. Note: Optimally, performance measurements should be taken when the transducer reaches a steady state.


Directivity Pattern

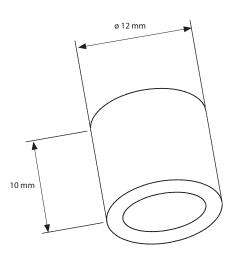

Transmit & Receive Voltage Response

Impedance Magnitude & Phase

Figure of Merit (Sum of TVR & RVR)

300 kHz

AIRDUCER® Ultrasonic Transducer


Applications

- Level measurement
- · Automation control
- Proximity
- Obstacle avoidance
- Robotics

Features

- Rugged sealed construction
- Cylindrical design allows for installation in various applications
- Short-range measurement capabilities

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

T1 Developer Board

Ultrasonic Air Transducer Transceiver Module

Technical Data Sheet

T1

Developer's Module for Evaluation of AIRDUCER® Transducers

Designed for fast and easy evaluation of Airmar's Ultrasonic Transducers, we are pleased to offer our versatile, T1 Transceiver Module. The entire frequency range of 30 kHz to 300 kHz Airmar transducers can be driven by the T1. With transmit voltage output of $200 \, V_{pp}$ to $500 \, V_{pp}$ and adjustable pulse width and frequency, the suitability of a piezoelectric transducer for a specific application can be clearly assessed.

A selectable receiver gain up to 60 dB allows amplification of echoes and viewing of waveforms on any oscilloscope. The T1 is a compact printed circuit board 76 mm x 76 mm and offers convenient connections to our ultrasonic transducer and your power supply.

SPECIFICATIONS

Transmit Voltage: $200 \, V_{pp}$ to $500 \, V_{pp}$

Selectable Receiver Gain: 0 dB, 20 dB, 40 dB, or 60 dB

Frequencies:

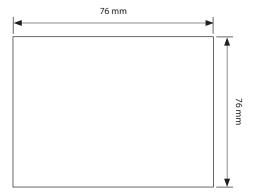
 $30~kHz,\,41~kHz,\,50~kHz,\,75~kHz,\,120~kHz,\,200~kHz,\,225~kHz~or~300~kHz$

Supply Voltage: 15 VDC

Printed Circuit Board Size: 76 mm x 76 mm

30-300 kHz

Transceiver Module


Applications

- · Echo-ranging
- · Liquid-level detection
- Obstacle avoidance
- Proximity sensing

Features

• Frequency and pulse width adjustable

Dimensions

Additional Resources

Theory of Operations

Applying Ultrasonic Technology

